
IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319 5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 7, July 2016 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2016.5701                                                       1 

Molecular solutions for the Maximum  

K-colourable Sub graph Problem in  

Adleman-Lipton model  
 

Akbar Moazam 

Department of Computer science, Isfahan University, Isfahan, Iran  

 

Abstract: Adleman [1] showed that deoxyribonucleic acid (DNA) strands could be employed towards calculating 

solutions to an instance of the Hamiltonian path problem (HPP). Lipton [5] also demonstrated that Adleman’s 

techniques could be used to solve the Satisfiability problem. In this paper, we use Adleman-Lipton model for 

developing a DNA algorithm to solve Maximum k-colourable Sub graph problem. In spite of the NP-hardness of 

Maximum k-colourable Sub graph problem our DNA procedures is done in a polynomial time. 
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I. INTRODUCTION 

 

Recently, DNA computing has considerable attention as 
one of non-silicon based computing. Watson-Crick 

complementarity and massive parallelism are two 

important features of DNA. By using these features, one 

can solve an NP-complete problem, which usually needs 

exponential time on a silicon-based computer, in a 

polynomial number of steps with DNA molecules [3]. 

Adleman [1] solved Hamiltonian path problem of size n in 

spite of NP-hardness of the problem in O(n) steps using 

DNA molecules. That is the first work for DNA 

computing. The second NP-hard problem that has solved 

by DNA computing is Satisfiability (SAT), Lipton [5] 
showed that the Adelman’s manner could be used to 

determine SAT. Moreover, procedures for primitive 

operations, such as logic or arithmetic operations, have 

also been proposed so as to apply DNA computing in a 

wide range of problems [3-4, 6-14]. In this paper, the 

DNA operations proposed by Adleman [1] and Lipton [5] 

are used for figuring out solutions of Maximum k-

colourable Sub graph problem. Given an undirected 

graph G = (V, E) with an assignment of weights to the 

edges w: E → N and an integer k ∈ {2, 3, …, |V|}, we try 

to find maximum EE ' such that the sub 

graph  )E ,(V = G '''
is k-colourable, i.e., there is a 

coloring for G' of cardinality at most k. There is another 

definition for this problem. 

Given an undirected graph G = (V, E) with an assignment 

of weights to the edges w: E → N and an 

integer k ∈ {2, 3, …, |V|}, partition V into k disjoint 

sets F = { kCCC ,...,2 ,1  } while maximizing  
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 Here we assume   weights of edges are equal 1.  

II. ADLEMAN-LIPTON MODEL 

 

Bio-molecular computers work at the molecular level. 
Since biological and mathematical operations have some 

similarities, DNA, the genetic material that encodes the 

living organisms, is stable and predictable in its reactions 

and can be used to encode information for mathematical 

problems. DNA algorithms typically solve problems by 

initially assembling large data sets as input and then 

eliminating undesirable solutions. A DNA 

(deoxyribonucleic acid) is a polymer, which is strung 

together from monomers called deoxyribonucleotides. 

Distinct nucleotides are detected only with their bases. 

Those bases are adenine (A), guanine (G), cytosine (C), 
and thymine (T). Two strands of DNA can form (under 

appropriate conditions) a double strand, if the respective 

bases are the Watson–Crick complements of each other, 

i.e., A matches T and C matches G. also 3’- end matches 

5’- end. For example, strands 5’-ACCGGATGTCA-3’ and 

3’-TGGCCTACAGT-5’ can form a double strand. We 

also call them as the complementary strand of each other. 

The length of a single DNA strand is the number of 

nucleotides comprising the single strand.  

Thus, if a single DNA strand includes 20 nucleotides, it is 

called a 20 mer. The length of a double strand (where each 

nucleotide is base paired) is counted in the number of base 
pairs. Thus, if we make a double strand from two single 

strands of length 20 mer, then the length of the double 

strand is 20 base pairs, also written as 20 bp. The DNA 

operations proposed by Adleman and Lipton [1, 2,3,4] are 

described below. A (test) tube is a set of molecules of 

DNA (i.e. a multi-set of finite strings over the alphabet 

{A, C, G, T}).  
 

(1) Merge 21 TT  : for two given test tubes 1T , 2T it 

stores the union 21 TT   in 1T and leaves 2T empty; 

(2) Copy 21 TT  : for a given test tube 1T it produces a 

test tube 2T with the same contents as 1T ; 
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(3) Detect (T): Given a test tube T it outputs ‘‘yes’’ if T 

contains at least one strand, otherwise, outputs ‘‘no’’; 

(4) Separation ( 1T , X, 2T ): for a given test tube 1T and a 

given set of strings X it removes all single strands 

containing a string in X from 1T , and produces a test tube 

2T with the removed strands; 

(5) Selection ( 1T , L, 2T ): for a given test tube 1T and a 

given integer L it removes all strands with length L from 

1T , and produces a test tube 2T with the removed strands; 

(6) Cleavage (T, 10 ): for a given test tube T and a string 

of two (specified) symbols 10  it cuts each double trend 

containing 
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(7) Annealing (T): for a given test tube T it produces all 

feasible double strands in T. The produced double strands 

are still stored in T after Annealing; 

(8) Denaturation (T): for a given test tube T it dissociates 

each double strand in T into two single strands; 

(9) Discard (T): for a given test tube T it discards the tube 

T; 

(10) Append (T, Z): for a given test tube T and a given 

short DNA singled strand Z it appends Z onto the end of 

every strand in the tube T; 

(11) Read (T): for a given tube T, the operation is used to 
describe a single molecule, which is contained in the tube 

T. Even if T contains many different molecules each 

encoding a different set of bases, the operation can give an 

explicit description of exactly one of them. 

Since these eleven manipulations are implemented with a 

constant number of biological steps for DNA strands , we 

assume that the complexity of each manipulation is )O(1

steps. 

 

III. SOLVING MAXIMUM K-COLOURABLE 

SUBGRAPH PROBLEM IN ADLEMAN–LIPTON 

MODEL      

 

 
Fig. 1.   

Let ),( EVG   be an undirected graph with the set of 

vertices being },,2,1|{ nkAV k    and the set of 

edges being },1|{ njisomeforeE ij  . Let |E|=d. 

Then 2)1(  nnd . Note that ije  is in E  if the vertices 

iA and jA are connected by an edge. In the following, the 

symbols ),,2,1(,,,@,,#,1,0 nkBAYX kk   denote 

distinct DNA singled strands with same length, say 10-

mer. And | |.| |  denotes the length of the DNA singled 

strand. Obviously the length of the DNA singled strands 

greatly depends on the size of the problem involved in 

order to distinguish all above symbols. We choose DNA 

singled strands jiy ,  to encode the edges connecting the 

vertices iA and jA with length of 10-mer. All these jiy ,

 can be taken the same, say 1y , for our problem. For 

convenience of argument we still use a dummy 

symbol jiy , of length 0-mer if the vertices iA and jA is 

not connected by an edge or i=j. For graph G we define W 

subsets and we define a collection },...,,{ 21 wVVVC  .  The 

strand ii jAB  in which Wjni  0,1  means iA  

vertices is in j-th subset.  And the strand ii AB 0  means iA  

does not exists in any subsets.  Tubes P and Q are defined 

as follows: 

Let ,...,n},,n, j,,,Y|kB,A#,#B {j,X,AP k-kn 212111   

and  ,...,n},,n, j,,|kjAB,#{Q kk 2121   

We design the following algorithm to solve the Maximum 

k-colourable Sub graph problem and give the 

corresponding DNA operations as follows: 

 

IV. PRODUCE EACH POSSIBLE COLLECTION C 

 

For a graph with n vertices, each possible C of vertices is 

represented by an n-digit number in base W.  For example, 

for graph 1 we can represent 

}},,{},,,{{ 76523211 AAAVAAAVC  as 2220111 

and show }},,{},,,{{ 76524311 AAAVAAAVC  as 

2221101, in which number j in i-th element shows that 

the vertices iA  is in the j-th subset, and if j=0 it means 

that this vertex doesn’t exist in any of the subsets. 

. In this way, we transform all possible collection C in an 

n-vertex graph into an ensemble of all n-digit in base W 

numbers. We call this the data pool. 
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After above six steps of manipulation, singled strands in 

tube P will encode all nW  collection C in the form of n-
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digit base W numbers. For example, for the graph in Fig. 1 

with n=7 we have, e.g. the singled strand  

#1110222# 11223344556677 ABABABABABABAB Which 

denotes the subset  

}},,{},,,{{ 76523211 AAAVAAAVC   corresponding 

to the number 2220111 in base W. This operation can be 

finished in )O(1  steps since each manipulation above 

works in )O(1 steps. 

 
V. ELIMINATING THE SETS NOT HAVING THE 

FIRST CONDITION 

 

First of all, for each collection },....,,{ 21 kVVVC   all iV  

should be disjoint. The definition of P and Q guarantee 

this. Because each strand can be in one subset each time. It 
is clear if you see this example 

#1110222# 11223344556677 ABABABABABABAB
. We 

cannot produce some strands like 

#11102202# 1122334455667777 ABABABABABABABAB  

. vertices 7A cannot be in two subsets. 

 

In this step we want to select collections that have K 

subsets. Let’s look at 

,...,n},,n, j,,|kjAB,#{Q kk 2121   . if we count 

the different number of j then we can count the number of 

subsets. Because each j shows one subset. In this example 

#1110222# 11223344556677 ABABABABABABAB  we 

have 0,1,2. If each strand contains j we add @ to the end 

of it. This algorithm does it by following steps. r =1..n 
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After run this algorithm for strand 

 

  #1110222# 11223344556677 ABABABABABABAB   

 

we will have 

 

 @@#1110222# 11223344556677 ABABABABABABAB
 

 

because we have two subsets. 

Now we should select strands with 
k

@@...@@ .because  It 

means, these strand show collections with k subset. For 

this purpose, we will remove all strands contain  
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1
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 and after that remove all strands contain 
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Each of the above actions will conclude at )O(1 . 

Therefore, the algorithm will terminate at O(n) . 

  

VI. COUNT THE EDGES OF EACH COLLECTION 

 
In each element in data pool we count the number of 

edges, that have one vertex in one subset and another one 

in different subset. 

In [4] introduce an algorithm for two subsets now. We 

want to use that algorithm for K subsets. in the following 

we illustrate algorithm for K=2 and then expand it to 

actual size. 

For example, for strand  

 

#1110222# 11223344556677 ABABABABABABAB  we  

have two subsets }{}{ 1,2,3,5,6,7 . 

We should add  

 

3,52,51,51,62,63,61,72,73,7 ,,,,,,,, yyyyyyyyy . 

This is the algorithm for K=2. 

 

End for
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Each of the above actions will conclude at )O(1 . 

Therefore, the algorithm will terminate at )O(n4
.  

 

VII. FIND THE STRANDS WITH MAXIMUM 

LENGTH 

 

In this step, if we find the longest strand, that strands will 
show us the solution of problem. For example, for this  

3,5

2,51,51,62,63,61,72,73,7

11223344556677

,,,,,,,,@@@@@

#1110222#

y

yyyyyyyy

ABABABABABABAB
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Will be  

 

3,52,6

11223344556677

,@@@@@

#1110222#

yy

ABABABABABABAB

 

 

because the length of other edges are equal to zero. 

Here the length of edge show that maximum solution. This 

algorithm calculate solution. 

 

End for

rculationnue the cielse contifor  then end 
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Note that, in each strand, the sub-strand @ can be repeated 
K times.  We will present an example for n=7.  The strand 

3,52,6

11223344556677

,@@

#1110222#

yy

ABABABABABABAB
 is 

 made up of sub-strand 

 11223344556677 1110222 ABABABABABABAB  with 

length 30*7 and 2 sub strands #,#  with length 20 and 

@@  with length 2*10 and the length of 3,52,6 , yy  is 2*10 

Hence the total length of this strand is 

 2010*2207*30  . 

Each of the above actions will conclude at )O(1 . This 

algorithm will terminate at O(n) . 

 

VIII. CONCLUSION 

 
The version of this template is V2.  Most of the formatting 

as you can see we can finish this algorithm in  )O(n4
. 
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O(n) 

 

steps using DNA molecules. Adleman’s work shows that 

one can solve an NP-complete problem, which usually 

needs exponential time on a silicon-based computer, in a 

polynomial number of steps with DNA molecules. From 

then on, Lipton[5] demonstrated that Adleman’s 
experiment could be used to determine the NP-complete 

Satisfiability (SAT) problem (the first NP-complete 

problem). In this paper, we propose a procedure for 

Maximum k-colourable Sub graph problem NP-complete 

problems in the Adleman–Lipton model. The procedure 

works in )( 4nO steps for Maximum k-colourable Sub 

graph problem of a directed graph with n vertices. All our 

results in this paper are based on a theoretical model. 

However, the proposed procedures can be implemented 

practically since every DNA manipulation used in this 

model has been already realized in lab level. 
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